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Background and purpose: Clinical decision support systems are a growing class of tools with the potential
to impact healthcare. This study investigates the construction of a decision support system through
which clinicians can efficiently identify which previously approved historical treatment plans are achiev-
able for a new patient to aid in selection of therapy.
Material and methods: Treatment data were collected for early-stage lung and postoperative oropharyn-
geal cancers treated using photon (lung and head and neck) and proton (head and neck) radiotherapy.
Machine-learning classifiers were constructed using patient-specific feature-sets and a library of histor-
ical plans. Model accuracy was analyzed using learning curves, and historical treatment plan matching
was investigated.
Results: Learning curves demonstrate that for these datasets, approximately 45, 60, and 30 patients are
needed for a sufficiently accurate classification model for radiotherapy for early-stage lung, postoperative
oropharyngeal photon, and postoperative oropharyngeal proton, respectively. The resulting classification
model provides a database of previously approved treatment plans that are achievable for a new patient.
An exemplary case, highlighting tradeoffs between the heart and chest wall dose while holding target
dose constant in two historical plans is provided.
Conclusions: We report on the first artificial-intelligence based clinical decision support system that con-
nects patients to past discrete treatment plans in radiation oncology and demonstrate for the first time
how this tool can enable clinicians to use past decisions to help inform current assessments. Clinicians
can be informed of dose tradeoffs between critical structures early in the treatment process, enabling
more time spent on finding the optimal course of treatment for individual patients.

� 2017 Published by Elsevier Ireland Ltd. Radiotherapy and Oncology 125 (2017) 392–397
The ideal radiotherapy treatment plan should be personalized,
delivering a potentially curative tumor dose while minimizing tox-
icity based on the individual patient’s specific anatomy and under-
lying medical condition. Traditionally, treatment planning
decisions are guided by high-quality scientific studies that map
quantities of radiation dose, e.g. Dose to 20% of the Lung Volume
(V20) or prescribed dose, to the likelihood of tumor control and
normal tissue toxicity. While the challenge of dosimetrically-
based planning is a solvable computational problem, the underly-
ing clinical challenge lies in understanding the best treatment plan
that can be achieved for a specific patient, related to differences in
patient anatomy, tradeoffs in the weighting of planning con-
straints, and conscious and unconscious biases on the part of the
prescribing physicians [1]. Moreover, the process of creating a
treatment plan requires close communications between practition-
ers with different areas of expertise in clinical medicine (physi-
cian), radiation delivery (physicist), and treatment planning
software (dosimetrist).

Clinical decision support systems leverage the history of past
decisions by a clinical team and quickly provide reference data
informed by past successes at a given clinic or shared between
clinics. Combined with contemporary machine learning (also
known as artificial intelligence) algorithms and large data stores,
these expert systems have begun to impact clinical practice, with
examples such as the triage of patients in the Emergency Depart-
ment [2] or highlighting of calcifications in breast mammography
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[3]. A key element of these systems is the ability to augment clin-
icians’ knowledge by processing previous decision records to iden-
tify those prior decisions and accompanying parameters that are
relevant to the current patient. Together with new algorithm
development, these systems promise to change the way decisions
are made in medicine [4–6]. In radiation oncology, machine learn-
ing has been used in applications ranging from quality assurance to
patient toxicity but clinical decision support systems (CDS) that
empower physicians have not reached widespread use [7–13].

This paper demonstrates a clinical decision support system uti-
lizing machine-learning for patient-specific treatment planning in
radiation oncology with the purpose of assisting the radiotherapy
planning team in making better treatment plan decisions by lever-
aging past data. The key differentiation of our system from other
‘‘knowledge based solutions” (KBS) to treatment planning is the
focus on helping physicians navigate expectations about dosimet-
ric tradeoffs before the treatment planning process. While other
existing approaches focus on determining dose–volume histogram
(DVH) expectations for individual organs at risk [14–16], our
approach allows prospective, expectant navigation of the inherent
tradeoffs between those expectations. The CDS described here is
aimed at helping physicians and the clinical team to determine
the best course of treatment before expending resources on a
lengthy treatment planning process, and to better define expecta-
tions among the radiation oncology team during the course of plan
development. While treatment planning is still required, the
knowledge ascertained from a CDS has the potential to guide ther-
apy and decrease the time needed to reach an acceptable plan.
Methods

Data collection

Data from 2009 to 2015 from the University of Pennsylvania
Health System was used in this Institutional Review Board-
approved retrospective study. The dataset was comprised of 104
consecutive early-stage lung cancer patients treated with stereo-
tactic body radiation therapy (SBRT). Of these data, 81 received a
prescription of 5000 cGy in 4 or 5 fractions to the planning target
volume (PTV) (peripheral lesions), with the remaining receiving a
prescription of 6000 cGy in 8 fractions (central lesions). An addi-
tional dataset was comprised of 40 patients with advanced-stage
squamous cell carcinoma of the oropharynx who received postop-
erative proton radiotherapy. Of these data, 38 patients were pre-
scribed between 6000 and 6600 cGy to the PTV (proton
Radiobiological Effect Dose, RBE = 1.1). For each oropharynx
patient, there also existed a volumetric modulated arc therapy
(VMAT) clinical backup photon plan. Patients were identified
through a database query (ARIA, Varian Medical Systems, CA).
These data were exported, anonymized, and accumulated for pro-
cessing by commercial software designed for the purposes of this
study (QuickMatch, Siris Medical, CA).
Patient treatment plan classification

The goal of the CDS system is to match the current patient to
previously treated patients with similar characteristics, such that
previously achieved treatment plans and tradeoffs can be explored.
This is represented schematically in Fig. 1. Current planning
approaches either do not algorithmically use past data (Fig. 1A),
or use past data to understand trends from DVH subpopulations
(Fig. 1B), primarily as a quality assurance tool. In contrast, plan
classification identifies discrete historical plans that can include
dose tradeoffs between the target and various organs-at-risk. The
requirements for plan classification are an accurate classification
algorithm combined with a knowledge database of previous
patient treatments. With a sufficiently large database, various
achievable results will be proposed by the algorithm such that
the clinical team has multiple reference points to use for optimally
choosing the appropriate dose trade-offs for a given patient
(Fig. 1C and E).

Consider a database of plans, P, from which we seek matches to
a specific plan p, where matching is defined according to a dissim-
ilarity index of the dosimetric indices between plans. Addressing
this problem as a classification problem similar to nearest neighbor
classification, we would like to find the plans in P that are closer to
p in terms of the dissimilarity index. A probability threshold, s, is
set for the dissimilarity index, and prior treatments that are within
the threshold produce treatment plan matches. Formally, the sub-
set Pp # P of plans in P that matches plan p can be defined as:

Pp # P : dissimilarityðPi;pjFp ¼ f p;Dp ¼ dp; Fi ¼ f i;Di ¼ diÞ 6 s
ð1Þ

where f are the features, d are the dosimetric indices, and the
indices ‘‘i” denote different plans in the database. For the current
patient, Fp and Dp are the features and dosimetric indices. A thresh-
old, s, is set for classification, and prior treatments that are within
the threshold produce treatment plan matches. This probability
threshold defines achievability and incorporates known sources of
dosimetric variability in planning, including the repeatability of
the treatment plan produced by the treatment planning system,
vTPS, and the variation in treatment planning preference between
clinicians, vC. The variability in the treatment planning system is
found empirically by repeatedly running the treatment planning
system for a given set of dosimetric objectives and priorities on
exemplary treatment plans. The variability in clinician preference
can be learned by calculating the variability in prediction for predic-
tion models built on different subgroups of the dataset, stratified by,
for example, treatment planner or physician. This threshold is
defined as:

T ¼ vTPS þ vC ð2Þ
More specifically, the dissimilarity between the new patient

plan p and a historical patient plan Pi is determined by calculating
the difference between the j dosimetric indices of patient p and
patient Pi. A historical patient is a match if,

distancefdpj ;dijg 6 T;8j ð3Þ
For an historical patient, di are the dosimetric indices from the

historical plan. For the new patient,

dp ¼ Fðf pÞ ð4Þ
where f p are the generated features for the new patient. As noted
above, a boosting framework is used to predict the dosimetric
indices:

Fðf pÞ ¼
X

j

Tjðf pÞ ð5Þ

where T(f) is a weak learner. Because of the modern machine learn-
ing approach that was used (boosting) and our extensive feature-
set, the summation in Eq. (5) is over thousands of decision trees that
take input from thousands of features. Therefore, a more detailed
description of the function represented in Eq. (5) is not practical
in this manuscript, and powerful computation is needed to obtain
its value. Boosting is a well-known technique in modern machine
learning and has been proven to be one of the most accurate, but
powerful computing is required to generate the result [19].

Creating the features that account for data variability is a criti-
cal aspect of an accurate classifier; this process is often viewed as
the most important aspect of a machine learning algorithm [19].
For an accurate feature set, we perform analysis on DICOM images,



Fig. 1. (A) Standard treatment planning where past patients are not recalled during the planning process. (B) Knowledge-based planning typified by several alternative
approaches [17,18]. (C) Treatment plan outcome decision support enabled using treatment plan classification. (D) Dose–volume histogram illustrating the range of values
that are acceptable for a certain plan provided by other knowledge-based planning approaches. (E) Dose–volume histogram illustrating distinct tradeoffs for two separate
plans that can be delivered using a classification technique.

Table 1
Feature-set categories used to predict dose for a radiation treatment plan.

Feature category Example features

Anatomical information Distance, volume, geometric relationship, and importance of structures and surrounding structures
Medical record ICD-9/10 code, gender, ethnicity
Treatment intent Fractionation schedule, treatment margin, number of beams/arcs, and the clinicians who are part of the team creating the radiation

treatment plan
Radiation transport Penumbra, aperture, incident angle, beam energy, radiation type (proton vs photon), depth of structure, and existence of bolus
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medical record data (e.g. ICD-9/10 diagnosis codes), radiation-
transport parameters (e.g. beam energy), and physician treatment
intent (e.g. prescription). Several important feature-sets are shown
below in Table 1. Additionally, the dosimetric indices for the gross
tumor volume (GTV), clinical target volume (CTV), PTV, and organs
at risk (OARs) are analyzed for each plan in the knowledge data-
base and aggregated to form the patient response or treatment
plan matrix. In this work, the predictive models are built using a
boosting framework which internally incorporates feature selec-
tion to avoid overfitting [20] and that has been previously used
in Radiation Oncology data [9].
Model assessment

An adequately large and heterogeneous database is needed to
ensure accuracy in plan classification and to ensure identification
of previously achievable treatment plans. To prevent over-fitting
during model creation, statistical models were constructed utiliz-
ing five-fold cross-validation techniques for each dataset [19].

Learning curves were constructed to analyze the effect of data-
set size on dosimetric model accuracy and misclassification error;
this technique is a standard method in the machine learning liter-
ature for analyzing model error with respect to dataset size [19].
For all dosimetric indices, a decreasing exponential was fit to the
data and extrapolated to analyze model error beyond the study
dataset size. In general, as the dataset size increases, the model is
able to capture the heterogeneity in the data, and thus generate
more accurate predictions. For classification, a larger dataset
enables more potential past patient treatments for classification.

In order to validate the classification of a treatment plan (to find
a match), validation datasets consisting of 10 SBRT lung patients
and 7 head and neck (HNC) patients were used. These patient plans
were independent of the original data (104 lung plans and 40 head
and neck plans) that were used to construct the statistical models,



Fig. 2. Learning curves relating the number of data points (patients) needed to achieve an expected error target. Each line represents a different dosimetric index for each
patient cohort (shown on the Y-axis).
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and thus represent the clinical scenario of new patients being
assessed by the system. Doses were predicted for each of the vali-
dation patients based on the calculated features and the results
were compared with the known validation patient doses.
Fig. 4. Treatment classification of the validation patients to the library for (A) lung
SBRT, (B) HNC photon-based IMRT, and (C) HNC proton therapy plans. Green lines
indicate that the patient in the library (column) was matched to a validation
patient. The gray area indicates that the patient in the library was not matched to
the validation patient. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Results

Dosimetric model accuracy and treatment plan misclassifica-
tion error were investigated using learning curve analyses [19].
Fig. 2 shows the learning curves for (A) lung SBRT, (B) HNC
photon-based IMRT, and (C) HNC proton therapy, for all dosimetric
indices. The discrete model error for the dosimetric index that
required the largest dataset (amount of learning) is overlaid as cir-
cles on the appropriate extrapolated curve. For lung patients, this
index is the maximum dose to the ipsilateral brachial plexus; for
HNC photon it is the mean dose to the contralateral submandibular
gland; for HNC proton, it is the mean dose to the ipsilateral parotid.
It can be seen that in order for dose prediction error to meet a 2 Gy
threshold, chosen as approximately 10% of the maximum dose con-
straints for the serial structures, a library of 97 patients is needed
for lung, 68 patients for HNC photon, and 92 patients for HNC
proton.

The validation datasets described above (10 lung patients, 7
HNC patients) were used to build plan classification learning
curves to determine the effect of database size on misclassification
error; these validation patients were not used in constructing the
statistical model. Fig. 3A shows the misclassification error for SBRT
lung plans, in which a dataset size of 45 was needed to correctly
classify all patients. For HNC photon plans, a dataset size of
approximately 60 patients was needed for accurate classification.
For HNC proton plans, a dataset size of 30 patients was needed.

The classification algorithm was used to investigate the number
of potential treatment plan matches for each patient in the valida-
Fig. 3. Learning curves relating misclassification error for different dataset (patient) sizes for (A) lung SBRT, (B) HNC photon-based IMRT, and (C) HNC proton therapy.
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Fig. 5. (A) Validation lung patient evaluated for treatment matches; (B) Possible dosimetric tradeoffs achievable between heart and chest wall for the specific validation
patient; (C) One such match (number 8) in which the treatment reduced chest wall dose; (D) Another match (number 92) where the dose to the heart is reduced.
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tion sets. The same patient libraries previously used to create the
classification models were used as potential matches for the vali-
dation set. Fig. 4 shows the patient matches (columns) available
for each of the validation patients (rows) for lung SBRT, HNC
photon-based IMRT, and HNC proton therapy, respectively. Green
lines indicate which library patients matched to the validation
patients; gray regions indicate that the corresponding library
patients were not a match.

A case of a patient with several applicable treatment dose trade-
offs is shown in Fig. 5. Fig. 5A presents the CT of a patient with
stage I non-small cell lung cancer that is matched to the library.
The dosimetric indices of two achievable matches are shown in
Fig. 5B; values that are above the treatment constraint limit are
marked in red. The treatment plans for these matched patients
are shown below, specifically patient 8 in Fig. 5C and patient 92
in Fig. 5D. Fig. 5B shows two different potential outcomes in which
a variety of outcomes may be explored. In the case of patient 8, the
decision was made historically to reduce the chest wall D30cc
below 25 Gy. This resulted in increased dose to the heart. Con-
versely, an alternative treatment plan outcome is shown for
patient 92, where the heart D15cc was reduced compared to that
of patient 8 (7.38 Gy decreased to 4.29 Gy), but with an increased
dose to the chest wall (24.9 Gy increased to 31.1 Gy) and the same
PTV coverage (50.3 Gy). It is important to note that although the
geometric position of the tumor on the validation set is not exactly
the same as that of the patient in panel D, the algorithm effectively
identifies the tradeoff between dose to chest wall and dose to the
heart for the case under interrogation. This tradeoff is visually
translated for the clinician by showing previous cases where the
compromises were made. A diagram such as that presented in
Fig. 5 can also assist a physician in informing a patient about the
inherent tradeoffs of a given clinical decision. This could shift the
current clinical decision making process to one in which both
physicians and patients may actively visualize the tradeoffs and
implications.
Discussion

The power of decision support is the ability to connect a current
patient to past decisions [2], which can be recalled from within the
same institution or across different institutions. The impact is that
decision support tools can enable investigation of prior applicable
decisions in an efficient manner by aiding expert opinion and
reducing the labor required to reach decision points. With more
expertise spent on the clinical decisions themselves, this approach
has the potential to improve efficiency, reduce costs, and impor-
tantly improve patient outcomes.

Indeed, decision support systems across oncology have proven
to be capable of having impact on workflow and quality of care.
For example, predictive systems have been used to estimate the
risk of breast lesion malignancy [3], predict the outcomes of
patients with lung cancer treated with chemoradiation therapy
[9,13], predict the survival of patients with skeletal metastases
[21] or predict which radiotherapy technique is more appropriate
[12,22,23]. Brodin et al. developed a decision support tool to inves-
tigate dose–response relationships in Hodgkin’s lymphoma, while
Cheng et al. have developed decision support systems to evaluate
the choice of proton vs photon [24,25]; this tool additionally aided
in the optimization of the treatment plan. Others have proposed
predictive models of radiotherapy treatment response for geni-
tourinary and thoracic sites [9,13]. Uniquely, the work described
herein is the first demonstration of a tool to enable patient-
specific dosimetric decision support in a generalized manner
across multiple anatomical sites, multiple treatment modalities,
and multiple fractionation schemes. In that regard, it is important
to highlight the differences between knowledge based solutions
(KBS) that to date have been used in radiation oncology and the
unique approach presented here. KBS focuses on finding thresholds
for error bars and is an excellent tool to evaluate the quality of the
planning process [14–16]. In this paper, we demonstrate the novel
feasibility of providing matches, which can aid physicians and
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patients in decision making prior to the treatment planning pro-
cess [26].

While the ability to investigate dose trade-offs offers similar
functionality to the ‘pareto’ approach to treatment planning [27],
a significant difference is that historical treatment decision support
can recall previous treatment decisions, acting as reference to past-
approved decisions, and may be applied across institutions.

There are drawbacks to the proposed technique related to data-
base size and quality. While the database only includes clinically-
approved plans, there is an inherent variability in the quality of
these cases; furthermore, an insufficient database size can restrict
the clinician to a match that may be suboptimal. In addition, a
reduced number of matches reduces the number of dose trade-
offs that can be explored, though these matches can still provide
the clinician with information that could benefit decision making.
A larger database, especially across multiple clinics, would provide
a more expansive group of matches which would capture better
quality plans and enable exploration of dosimetric trade-offs in
greater resolution.

One limitation of the current study is that some of the learning
curves needed to be extrapolated to reach the desired reported
error. While this is standard practice in the machine learning liter-
ature [19], there is uncertainly in the exact numbers of patient data
needed to reach the stated error for such curves.

This study demonstrates the utility of the data-driven machine
learning strategy in multiple anatomical sites, fractionation
schemes, and treatment modalities. It is, however, limited to the
datasets studied herein. Future investigations will assess the
impact in additional anatomical sites, fractionation schemes, and
treatment modalities, as well as the application to treatment deci-
sions such as which technique or delivery modality is optimal. Fur-
ther work will also investigate the effect of dataset size to
matching; it is anticipated that the impact of this technique will
strengthen with larger dataset sizes and across multiple institu-
tions, as the number of matches and thus the degree of clinical
insight will increase. Additionally, future work will investigate
the impact on enabling remote consultation and remote planning.
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